

SINHGAD INSTITUTE OF TECHNOLOGY

(Affiliated to SPPU Pune and Approved by, AICTE, New Delhi.)
Gat No. 309/310, Kusgaon (Bk), off Mumbai –Pune, Expressway.
Lonavala, Pune, 410401, Website: sit.sinhqad.edu

Department of Mechanical Engineering

Course Outcomes (COs) 2019 Pattern

		SE [Mech]2	019 Pattern
SN	Course Code	I	Course Outcomes (COs)
01	202041	Solid Mechanics	CO1: DEFINE various types of stresses
			and strain developed on determinate and
			indeterminate members.
			CO2: DRAW Shear force and bending
			moment diagram for various types of
			transverse loading and support.
			CO3: COMPUTE the slope &
			deflection, bending stresses and shear
			stresses on a beam.
			CO4: CALCULATE torsional shear
			stress in shaft and buckling on the
			column.
			CO5: APPLY the concept of principal stresses and theories of failure to
			determine stresses on a 2-D element.
			CO6: UTILIZE the concepts of SFD & BMD, torsion and principal stresses to
			solve combined loading application
			based problems.
02	202042	Solid Modeling and	CO1: UNDERSTAND basic concepts of CAD
		Drafting	system, need and scope in Product Lifecycle
			Management.
			_
			CO2: UTILIZE knowledge of curves and
			surfacing features and methods to create
			complex solid geometry.
			CO3: CONSTRUCT solid models, assemblies
			using various modelling techniques &
			PERFORM mass property analysis, including
			creating and using a coordinate system.
			CO4: APPLY geometric transformations to
			simple 2D geometries.
			CO5: USE CAD model data for various CAD based engineering applications viz. production
			drawings, 3D printing, FEA, CFD, MBD, CAE,
			CAM, etc.
			CO6: USE PMI & MBD approach for

SINHGAD INSTITUTE OF TECHNOLOGY

(Affiliated to SPPU Pune and Approved by, AICTE, New Delhi.)
Gat No. 309/310 , Kusgaon (Bk), off Mumbai –Pune, Expressway.

	T	Department of Me	chanical Engineering
			communication.
03	202043	Engineering	CO1: DESCRIBE the basics of
		Thermodynamics	thermodynamics with heat and work
			interactions.
			CO2: APPLY laws of thermodynamics to
			steady flow and non-flow processes.
			CO3: APPLY entropy, available and non
			available energy for an Open and Closed
			System,
			CO4 DETERMINE the properties of steam
			and their effect on performance of vapour
			power cycle.
			CO5: ANALYSE the fuel combustion process
			and products of combustion. CO6: SELECT various instrumentations
			required for safe and efficient operation of steam generator.
04	202044	Engineering Materials	CO1: COMPARE crystal structures and
		and Metallurgy	ASSESS different lattice parameters.
			CO2: CORRELATE crystal structures
			•
			and imperfections in crystals with mechanical behaviour of materials.
			CO3 DIFFERENTIATE and
			DETERMINE mechanical properties
			using destructive and non- destructive
			testing of materials.
			CO4: IDENTIFY & ESTIMATE
			different parameters of the system viz.,
			phases, variables, component, grains,
			grain boundary, and degree of freedom.
			etc.
			CO5: ANALYSE effect of alloying
			element & heat treatment on properties
			of ferrous & nonferrous alloy.
			CO6: SELECT appropriate materials for
			various applications.
05	203156	Electrical and	CO1: APPLY programming concepts to
		Electronics Engineering	UNDERSTAND role of Microprocessor and
			Microcontroller in embedded systems.
			CO2: DEVELOP interfacing of different
			types of sensors and other hardware devices
			with Atmega328 based Arduino Board.
			CO3: UNDERSTAND the operation of DC
			motor, its speed control methods and braking.
	1		CO4: DISTINGUISH between types of three

SINHGAD INSTITUTE OF TECHNOLOGY

(Affiliated to SPPU Pune and Approved by, AICTE, New Delhi.)
Gat No. 309/310 , Kusgaon (Bk), off Mumbai –Pune, Expressway.

	1	Department of Med	chanical Engineering
			phase induction motor and its characteristic features
			CO5: EXPLAIN about emerging technology
			of Electric Vehicle (EV) and its modular
			subsystems.
			CO6: CHOOSE energy storage devices and
			electrical drives for EVs.
06	202045	Geometric	CO1: SELECT appropriate IS and ASME
00		Dimensioning and	standards for drawing
		Tolerancing Lab	CO2: READ & ANALYSE variety of industrial
			drawings
			CO3: APPLY geometric and dimensional
			tolerance, surface finish symbols in drawing
			CO4: EVALUATE dimensional tolerance based
			on type of fit, etc.
			CO5: SELECT an appropriate manufacturing
			process using DFM, DFA, etc.
07	207002	Engineering	CO1: SOLVE higher order linear differential
07	207002	Mathematics - III	equations and its applications to model and
		Wathematics - III	analyze mass spring systems.
			CO2: APPLY Integral transform techniques
			such as Laplace transform and Fourier
			transform to solve differential equations
			involved in vibration theory, heat transfer and
			related mechanical engineering applications.
			CO3: APPLY Statistical methods like correlation,
			regression in analysing and interpreting
			experimental data applicable to reliability
			engineering and probability theory in testing
			and quality control.
			CO4: PERFORM Vector differentiation &
			integration, analyze the vector fields and APPLY
			to fluid flow problems.
			CO5: SOLVE Partial differential equations such
			as wave equation, one and two dimensional
			heat flow equations.
08	202047	Kinematics of	CO1: APPLY kinematic analysis to simple
		Machinery	mechanisms.
			CO2: ANALYZE velocity and acceleration in
			mechanisms by vector and graphical method.
			CO3: SYNTHESIZE a four bar mechanism with
			analytical and graphical methods.
			CO4: APPLY fundamentals of gear theory as a
			prerequisite for gear design.
			CO5: Construct cam profile for given follower
			motion.
	t.	1.	,

SINHGAD INSTITUTE OF TECHNOLOGY

(Affiliated to SPPU Pune and Approved by, AICTE, New Delhi.)
Gat No. 309/310 , Kusgaon (Bk), off Mumbai –Pune, Expressway.

-		<u> </u>	chanical Engineering
09	202048	Applied	CO1: Determine COP of refrigeration system
		Thermodynamics	and Analuze psychrometric processes.
		_	CO2: DISCUSS basics of engine terminology, air
			standard, fuel air and actual cycles.
			CO3: IDENTIFY factors affecting the combustion
			_
			performance of SI and CI engines.
			CO4: DETERMINE performance parameters of
			IC Engines and emission control.
			CO5: EXPLAIN working of various IC Engine
			systems and use of alternative fuels.
			CO6: Calculate performance of single and
			multi stage reciprocating compressors and
			DISCUSS rotary positive displacement
			compressors.
10	202040	Fluid Mechanics	
10	202049	Fiuld Mechanics	CO1: DETERMINE various properties of fluid.
			CO2: APPLY the laws of fluid statics and
			concepts of buoyancy.
			CO3: IDENTIFY types of fluid flow and terms
			associated in fluid kinematics.
			CO4: APPLY principles of fluid dynamics to
			laminar flow.
			CO5: Estimate friction and minor losses in
			internal flows and DETERMINE boundary layer
			formation over an external surface.
			CO6: Construct mathematical correlation
			considering dimensionless parameters, also
			ABLE to predict the performance of prototype
1.1	202020		using model laws.
11	202050	Manufacturing	CO1:Select appropriate moulding, core
		Processes	making and melting practice and estimate
			pouring time, solidification rate and DESIGN
			riser size and location for sand casting
			process.
			CO2: Understand mechanism of metal
			forming techniques and Calculate load
			required for flat rolling.
			CO3: Demonstrate press working operations
			and apply the basic principles to design dies
			and tools for forming and shearing operations.
			CO4: Classify and explain different welding
			processes and evaluate welding
			characteristics.
			CO5: Differentiate thermoplastics and
			thermosetting and explain polymer
			processing techniques.
			CO6: UNDERSTAND the principle of
			manufacturing of fibre-reinforce composites
	1	1	, , , , , , , , , , , , , , , , , , , ,

SINHGAD INSTITUTE OF TECHNOLOGY

(Affiliated to SPPU Pune and Approved by, AICTE, New Delhi.)
Gat No. 309/310 , Kusgaon (Bk), off Mumbai –Pune, Expressway.

Lonavala, Pune, 410401, Website : sit.sinhqad.edu

Department of Mechanical Engineering

			and matel matrix as a site a
1.0	202071		and metal matrix composites.
12	202051	Machine Shop	CO1: PERFORM welding using TIG/ MIG/
			Resistance/Gas welding technique.
			CO2: MAKE Fibre-reinforced Composites by
			hand lay-up process or spray lay-up
			techniques.
			CO3: PERFORM cylindrical/surface grinding
			operation and CALCULATE its machining
			time.
			CO4: DETERMINE number of indexing
			movements required and acquire skills to
			PRODUCE a spur gear on a horizontal milling
			machine.
			CO5: PREPARE industry visit report.
			CO6: UNDERSTAND procedure of plastic
			processing.
13	202052	Project Based Learning -	CO1: IDENTIFY the real-world problem
		ll ,	(possibly of interdisciplinary nature) through
			a rigorous literature survey and formulate /
			set relevant aims and objectives.
			CO2: ANALYZE the results and arrive at valid
			conclusions.
			CO3: PROPOSE a suitable solution based on
			the fundamentals of mechanical engineering
			by possibly integration of previously acquired
			knowledge.
			CO4: CONTRIBUTE to society through
			proposed solutions by strictly following
			professional ethics and safety measures.
			CO5: USE of technology in proposed work
			and demonstrate learning in oral and written
			form.
			CO6: DEVELOP ability to work as an individual
			and as a team member.

Course Outcomes (COs) 2019 Pattern

	SE [Mech]2015 Pattern				
SN	Course Code	Course Name	Course Outcomes (COs)		
01	207002	Engineering	CO1:Solve higher order linear differential		
		Mathematics-III	equations and apply to modeling and analyzing		

SINHGAD INSTITUTE OF TECHNOLOGY

(Affiliated to SPPU Pune and Approved by, AICTE, New Delhi.)
Gat No. 309/310 , Kusgaon (Bk), off Mumbai –Pune, Expressway.

CO2: Apply Laplace transform and Fourier transform techniques to solve differential equations involved in Vibration theory, Heat transfer and related engineering applications. CO3: Apply statistical methods like correlation, regression analysis in analyzing, interpreting experimental data and probability theory in testing and quality control. CO4: Perform vector differential equations and integration, analyze the vector fields and apply to fluid flow problems. CO5: Solve various partial differential equations such as wave equation, one and two dimensional heat flow equations. CO6: To make acquaintance of foundry processes pattern making and casting CO2: To study metal forming processes such forging, rolling, extrusion and wire drawing CO3: To make study of different plastic molding processes CO5: To design and development of product with Sheet metal working processes CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 3D machine components modelling. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and		T	Department of Me	chanical Engineering
transform techniques to solve differential equations involved in Vibration theory, Heat transfer and related engineering applications. CO3: Apply statistical methods like correlation, regression analysis in analyzing, interpreting experimental data and probability theory in testing and quality control. CO4: Perform vector differentiation and integration, analyze the vector fields and apply to fluid flow problems. CO5: Solve various partial differential equations such as wave equation, one and two dimensional heat flow equations. CO5: To make acquaintance of foundry processes pattern making and casting CO2: To study metal forming processes such forging, rolling, extrusion and wire drawing CO3: To make study of different plastic molding processes CO4: To study metal joining processes CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, P.LM. CO2: Understand the significance of parametric technology and its application in 3D machine components modelling. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				mass spring systems
involved in Vibration theory, Heat transfer and related engineering applications. CO3: Apply statistical methods like correlation, regression analysis in analyzing, interpreting experimental data and probability theory in testing and quality control. CO4: Perform vector differentiation and integration, analyze the vector fields and apply to fluid flow problems. CO5: Solve various partial differential equations such as wave equation, one and two dimensional heat flow equations. CO1: To make acquaintance of foundry processes pattern making and easting CO2: To study metal forming processes such forging, rolling, extrusion and wire drawing CO3: To make study of different plastic molding processes CO4: To study metal joining processes CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				CO2: Apply Laplace transform and Fourier
involved in Vibration theory, Heat transfer and related engineering applications. CO3: Apply statistical methods like correlation, regression analysis in analyzing, interpreting experimental data and probability theory in testing and quality control. CO4: Perform vector differentiation and integration, analyze the vector fields and apply to fluid flow problems. CO5: Solve various partial differential equations such as wave equation, one and two dimensional heat flow equations. CO1: To make acquaintance of foundry processes pattern making and easting CO2: To study metal forming processes such forging, rolling, extrusion and wire drawing CO3: To make study of different plastic molding processes CO4: To study metal joining processes CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 3D machine components modelling and its application in 3D machine components manufacturability and				transform techniques to solve differential equations
related engineering applications. CO3: Apply statistical methods like correlation, regression analysis in analyzing, interpreting experimental data and probability theory in testing and quality control. CO4: Perform vector differentiation and integration, analyze the vector fields and apply to fluid flow problems. CO5: Solve various partial differential equations such as wave equation, one and two dimensional heat flow equations. CO1: To make acquaintance of foundry processes pattern making and casting CO2: To study metal forming processes such forging, rolling, extrusion and wire drawing CO3: To make study of different plastic molding processes CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				
CO3: Apply statistical methods like correlation, regression analysis in analyzing, interpreting experimental data and probability theory in testing and quality control. CO4: Perform vector differentiation and integration, analyze the vector fields and apply to fluid flow problems. CO5: Solve various partial differential equations such as wave equation, one and two dimensional heat flow equations. CO1: To make acquaintance of foundry processes pattern making and casting CO2: To study metal forming processes such forging, rolling, extrusion and wire drawing CO3: To make study of different plastic molding processes CO4: To study metal joining processes CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				
regression analysis in analyzing, interpreting experimental data and probability theory in testing and quality control. CO4: Perform vector differentiation and integration, analyze the vector fields and apply to fluid flow problems. CO5: Solve various partial differential equations such as wave equation, one and two dimensional heat flow equations. CO1: To make acquaintance of foundry processes pattern making and casting CO2: To study metal forming processes such forging, rolling, extrusion and wire drawing CO3: To make study of different plastic molding processes CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				
experimental data and probability theory in testing and quality control. CO4: Perform vector differentiation and integration, analyze the vector fields and apply to fluid flow problems. CO5: Solve various partial differential equations such as wave equation, one and two dimensional heat flow equations. CO1: To make acquaintance of foundry processes pattern making and casting CO2: To study metal forming processes such forging, rolling, extrusion and wire drawing CO3: To make study of different plastic molding processes CO4: To study metal joining processes CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				
and quality control. CO4: Perform vector differentiation and integration, analyze the vector fields and apply to fluid flow problems. CO5: Solve various partial differential equations such as wave equation, one and two dimensional heat flow equations. CO1: To make acquaintance of foundry processes pattern making and casting CO2: To study metal forming processes such forging, rolling, extrusion and wire drawing CO3: To make study of different plastic molding processes CO4: To study metal joining processes CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				
CO4: Perform vector differentiation and integration, analyze the vector fields and apply to fluid flow problems. CO5: Solve various partial differential equations such as wave equation, one and two dimensional heat flow equations. CO1: To make acquaintance of foundry processes pattern making and casting CO2: To study metal forming processes such forging, rolling, extrusion and wire drawing CO3: To make study of different plastic molding processes CO4: To study metal joining processes CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				
integration, analyze the vector fields and apply to fluid flow problems. CO5: Solve various partial differential equations such as wave equation, one and two dimensional heat flow equations. CO1: To make acquaintance of foundry processes pattern making and casting CO2: To study metal forming processes such forging, rolling, extrusion and wire drawing CO3: To make study of different plastic molding processes CO4: To study metal joining processes CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				
fluid flow problems. CO5: Solve various partial differential equations such as wave equation, one and two dimensional heat flow equations. CO1: To make acquaintance of foundry processes pattern making and casting CO2: To study metal forming processes such forging, rolling, extrusion and wire drawing CO3: To make study of different plastic molding processes CO4: To study metal joining processes CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				
CO5: Solve various partial differential equations such as wave equation, one and two dimensional heat flow equations. CO1: To make acquaintance of foundry processes pattern making and casting CO2: To study metal forming processes such forging, rolling, extrusion and wire drawing CO3: To make study of different plastic molding processes CO4: To study metal joining processes CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				
such as wave equation, one and two dimensional heat flow equations. CO: To make acquaintance of foundry processes pattern making and casting CO2: To study metal forming processes such forging, rolling, extrusion and wire drawing CO3: To make study of different plastic molding processes CO4: To study metal joining processes CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				
such as wave equation, one and two dimensional heat flow equations. CO: To make acquaintance of foundry processes pattern making and casting CO2: To study metal forming processes such forging, rolling, extrusion and wire drawing CO3: To make study of different plastic molding processes CO4: To study metal joining processes CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				CO5: Solve various partial differential equations
heat flow equations. CO1: To make acquaintance of foundry processes pattern making and casting CO2: To study metal forming processes such forging, rolling, extrusion and wire drawing CO3: To make study of different plastic molding processes CO4: To study metal joining processes CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				
CO1: To make acquaintance of foundry processes pattern making and casting				•
Process - I pattern making and casting CO2: To study metal forming processes such forging, rolling, extrusion and wire drawing CO3: To make study of different plastic molding processes CO4: To study metal joining processes CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and	02.	202041	Manufacturing	^
CO2: To study metal forming processes such forging, rolling, extrusion and wire drawing CO3: To make study of different plastic molding processes CO4: To study metal joining processes CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and	02	202011	_	•
forging, rolling, extrusion and wire drawing CO3: To make study of different plastic molding processes CO4: To study metal joining processes CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and			110000	pattern making and casting
forging, rolling, extrusion and wire drawing CO3: To make study of different plastic molding processes CO4: To study metal joining processes CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				CO2: To study metal forming processes such
CO3: To make study of different plastic molding processes CO4: To study metal joining processes CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				• • • • • • • • • • • • • • • • • • • •
CO4: To study metal joining processes CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				rorging, ronning, entrusion and wife drawing
CO4: To study metal joining processes CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				CO3: To make study of different plastic molding
CO4: To study metal joining processes CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				
CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				processes
CO5: To design and development of product with Sheet metal working process CO6: Introduction to center lathe CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				CO4: To study metal joining processes
Sheet metal working process CO6: Introduction to center lathe (Computer Aided Machine Drawing) CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				
CO6: Introduction to center lathe (Computer Aided Machine Drawing) (Computer Aided Machine Drawing) (Computer Aided Machine Drawing) (Consumption of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. (CO2: Understand the significance of parametric technology and its application in 2D sketching. (CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. (CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. (CO5: Ability to ensure manufacturability and				
O3 202042 (Computer Aided Machine Drawing) CO1: Understand the importance of CAD in the light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				
Machine Drawing) light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				Coo. introduction to center rathe
Machine Drawing) light of allied technologies such as CAM, CAE, FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and	03	202042	(Computer Aided	CO1: Understand the importance of CAD in the
FEA, CFD, PLM. CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and	0.5	202042		
CO2: Understand the significance of parametric technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and			wachine Drawing)	
technology and its application in 2D sketching. CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				
CO3: Understand the significance of parametric feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				-
feature-based modelling and its application in 3D machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				
machine components modelling. CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				• •
CO4: Ability to create 3D assemblies that represent static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				0 11
static or dynamic Mechanical Systems. CO5: Ability to ensure manufacturability and				
CO5: Ability to ensure manufacturability and				CO4: Ability to create 3D assemblies that represent
				static or dynamic Mechanical Systems.
				CO5: Ability to ensure manufacturability and
proper assembly of components and assemblies.				proper assembly of components and assemblies.
CO6: Ability to communicate between Design and				
Manufacturing using 2D drawings				•
04 202043 Thermodynamics) CO1: Apply various laws of thermodynamics to	04	202043	Thermodynamics)	
various processes and real systems.	U-T	202073	inci modynamics)	
CO2: Apply the concept of Entropy, Calculate heat,				
work and other important thermodynamic				
properties for various ideal gas processes.				
CO3: Estimate performance of various				-
Thermodynamic gas power cycles and gas				,
refrigeration cycle and availability in each case.				refrigeration cycle and availability in each case.

SINHGAD INSTITUTE OF TECHNOLOGY

(Affiliated to SPPU Pune and Approved by, AICTE, New Delhi.)
Gat No. 309/310 , Kusgaon (Bk), off Mumbai –Pune, Expressway.

	ı	Dopartmont of mot	Table 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			CO4: Estimate the condition of steam and
			performance of vapour power cycle and vapour
			compression cycle
			CO5: Estimate Stoichiometric air required for
			combustion, performance of steam generators and
			natural draught requirements in boiler plants.
05	202044	Material Science	CO1: Understand the basic concepts and properties
			of Material.
			CO2: Understand about material fundamental and
			processing.
			CO3: Select proper metal, alloys, nonmetal and
			powder metallurgical component for specific
			requirement
			CO4: Detect the defects in crystal and its effect on
			crystal properties.
			CO5: Evaluate the different properties of material
			by studying different test
			CO6: Recognize how metals can be strengthened
			by cold-working and hot working
06	202051	Strength of Materials)	CO1: Apply knowledge of mathematics, science
		,	for engineering applications
			CO2: Design and conduct experiments, as well as
			to analyze and interpret data
			CO3: Design a component to meet desired needs
			within realistic constraints of health and safety
			CO4: Identify, formulate, and solve engineering
			problems
			CO5: Practice professional and ethical
			responsibility
			CO6: Use the techniques, skills, and modern
			engineering tools necessary for engineering
			practice
07	202045	Fluid Mechanics)	CO1: Use of various properties in solving the
			problems in fluids
			CO2: Use of various types of flows and use of
			continuity equation in pipe flows
			CO3: Use of Bernoulli's equation for solutions in
			fluids and its application in measuring devices
			CO4: Use of velocity, shear stress distribution
			equation for laminar and turbulent flow
			CO5: Use of Darcy Weisbach equation for solving
			head loss problems and use of dimensional analysis
			CO6: Determination of forces drag and lift on
			immersed bodies and boundary layer theory
08	202048	Theory of Machines-I)	CO1: To make the student conversant with
			commonly used mechanism for industrial
			application.
			CO2: To develop competency in drawing velocity
			and acceleration diagram for simple and complex
			mechanism.
<u> </u>		l	mcommittee.

SINHGAD INSTITUTE OF TECHNOLOGY

(Affiliated to SPPU Pune and Approved by, AICTE, New Delhi.)
Gat No. 309/310 , Kusgaon (Bk), off Mumbai –Pune, Expressway.

			G00 T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			CO3: To develop analytical competency in solving
			kinematic problems using complex algebra method.
			CO4: To develop competency in graphical and
			analytical method for solving problems in static
			and dynamic force analysis.
			CO5: To develop competency in conducting
			laboratory experiments for finding moment of
			inertia of rigid bodies,
			CO6: To Analyze velocity and acceleration of
			mechanisms by vector and graphical methods.
09	202049	(Engineering	CO1: Describe how metals and alloys formed and
		Metallurgy)	how the properties change due to microstructure
			CO2: Apply core concepts in Engineering
			Metallurgy to solve engineering problems.
			CO3: Conduct experiments, as well as to analyze
			and interpret data
			CO4: Select materials for design and construction.
			CO5: Possess the skills and techniques necessary
			for modern materials engineering practice
			CO6: Recognize how metals can be strengthened
			by alloying, cold-working, and heat treatment
10	202050	Applied	CO1: Classify various types of Engines, Compare
		Thermodynamics)	Air standard, Fuel Air and Actual cycles and make
			out various losses in real cycles.
			CO2: Understand Theory of Carburetion, Modern
			Carburettor, Stages of Combustion in S. I. Engines
			and Theory of Detonation, Pre-ignition and factors
			affecting detonation.
			CO3: Understand Fuel Supply system, Types of
			Injectors and Injection Pumps, Stages of
			Combustion in CI Engines, Theory of Detonation
			in CI Engines and Comparison of SI and CI
			Combustion and Knocking and Factors affecting,
			Criteria for good combustion chamber and types.
			CO4: Carry out Testing of I. C. Engines and
			analyze its performance
			CO5: Describe construction and working of various
			I. C. Engine systems (Cooling, Lubrication,
			Ignition, Governing, and Starting) also various
			harmful gases emitted from exhaust and different
			devices to control pollution and emission norms for
			pollution control.
			CO6: Describe construction, working of various
			types of reciprocating and rotary compressors with
			performance calculations of positive displacement
			compressors.
11	203152	Electrical and	CO1: To Develop the capability to identify and
11	203132	Electrical and Electronics	select suitable DC motor / and its speed control
		Engineering)	method for given industrial application.
		Engineering)	CO2: To Develop the capability to identify and
			CO2. To Develop the capability to identity and

SINHGAD INSTITUTE OF TECHNOLOGY

(Affiliated to SPPU Pune and Approved by, AICTE, New Delhi.)
Gat No. 309/310 , Kusgaon (Bk), off Mumbai –Pune, Expressway.

	T	Department of wet	Shanical Engineering
			select suitable induction and its speed control
			method for given industrial application.
			CO3: To Develop the capability to identify and
			select suitable special purpose motor and its speed
			control method for given industrial application.
			CO4: To Develop the capability to identify and
			select suitable microcontroller and its application in
			industry.
			CO5: To understand Embedded systems
			terminologies and sensors
			CO6: To understand Data acquisition system for
			mechanical applications
]2015 Pattern
01	302041	Design of Machine	CO1: Ability to identify and understand failure
		Elements-I)	modes for mechanical elements and design of
			machine elements based on strength.
			CO2: Ability to design Shafts, Keys and Coupling
			for industrial applications.
			CO3: Ability to design machine elements subjected
			to fluctuating loads.
			CO4: Ability to design Power Screws for various
			applications.
			CO5: Ability to design fasteners and welded joints
			subjected to different loading conditions.
			CO6: Ability to design various Springs for strength
			and stiffness.
02	302042	Heat Transfer)	CO1: Analyse the various modes of heat transfer
02	302042	Treat Transfer)	and implement the basic heat conduction equation
			for steady state 1-D thermal system.
			CO2: Implement the general heat conduction
			equation to thermal systems with and without
			internal heat generation and transient heat
			conduction.
			CO3: Apply knowledge of lumped parameter
			analysis for unsteady state heat conduction and
			transient heat analysis using charts.
			CO4: Analyse the heat transfer rate in natural and
			forced convection and evaluate through
			experimental investigation.
			CO5: Interpret Radiation heat transfer between
			objects with simple geometries.
			CO6: Analyse the heat transfer equipment and
			investigate the performance.
03	30204	Theory of Machines-	CO1: To develop competency in understanding of
		II) 3	theory of all types of gears.
		y =	CO2: To understand the analysis of different types
			of gear train.
			CO3: To understand step-less regulations.
	1		
			COA: To make the student convergent with
			CO4: To make the student conversant with synthesis of the mechanism.

SINHGAD INSTITUTE OF TECHNOLOGY

(Affiliated to SPPU Pune and Approved by, AICTE, New Delhi.)
Gat No. 309/310 , Kusgaon (Bk), off Mumbai –Pune, Expressway.

			CO5: To understand step-less regulations.
			CO6: To understand mechanisms for system
			•
04	302044	(Turbo Machines)	control – Gyroscope. CO1: Apply thermodynamics and kinematics
04	302044	(Turbo Machines)	principles to turbo machines.
			* *
			CO2: Analyze the performance of turbo machines.
			CO3: Ability to select turbo machine for given
			application. CO4: Predict performance of turbo machine using
			model analysis.
			CO5: Perform the preliminary design of turbo
			machines (pumps, rotary compressors and turbines)
			CO6: Interpret the language and some of the
			current efforts of turbo machinery manufacturers.
05	302045	Metrology and Quality	CO1: Explain tolerance, limits of size, fits,
03	302043	Control)	geometric and position
		Control)	tolerances, and gauge design
			CO2: Understand the methods of measurement,
			selection of
			measuring instruments / standards of measurement,
			carryout
			data collection and its analysis.
			CO3: Understand the advanced methods of
			measurement, and
			relevant concepts from interdisciplinary areas.
			CO4: Develop an ability of problem solving and
			decision making
			by identifying and analysing the cause for variation
			and
			recommend suitable corrective actions for quality
			Improvement.
			CO5: Understand and use/apply Quality Control
			Techniques/
			Statistical Tools appropriately
			CO6: Understand and use/apply TQM tools and
			Quality
			management systems
06	302046	(Skill Development)	CO1: To Develop the skill required for shop floor
		302046	working
			CO2: To have a Knowledge of Different tools and
			tackles used in machine assembly shop
			CO3: To apply Theoretical Knowledge in Practice
			CO4: To study Practical Aspect of each component
			in the assembly of machine shop
			CO5: To understand Function of Parts and its uses.
			CO6: To Understand part Drawing with GD & T
			sequencing.
07	302047	Numerical Methods	CO1: Recognize the difference between analytical
		and Optimization)	and Numerical Methods.
			CO2: Identify the appropriate Numerical Methods

SINHGAD INSTITUTE OF TECHNOLOGY

(Affiliated to SPPU Pune and Approved by, AICTE, New Delhi.)
Gat No. 309/310 , Kusgaon (Bk), off Mumbai –Pune, Expressway.

	1	Dopartment of Met	
			to solve complex mechanical engineering
			problems.
			CO3: Formulate algorithms for Numerical methods and implement same to evaluate the solution using
			programming language.
			CO4: Analyze and formulate Solutions for real life
			problem using optimization techniques.
			CO5: Develop logical sequencing for solution
			procedure and skills in soft computing.
			CO6: Implement Numerical methods in research
			problem
08	302048	Design of Machine	CO1: To understand and apply principles of gear
00	302040	Elements-II)	design to spur gears and industrial spur gear boxes.
		Elements-11)	CO2: To become proficient in Design of Helical
			and Bevel Gear.
			CO3: To develop capability to analyse Rolling
			contact bearing manufacturing's Catalogue.
			CO4: To learn a skill to design worm gear box for
			various industrial applications.
			CO5: To inculcate an ability to design belt drives
			and selection of belt, rope and chain drives.
			CO6: To achieve an expertise in design of sliding
			contact bearing in industrial applications.
09	302049	Refrigeration and Air	CO6: Compare different refrigerants with respect to
		Conditioning)	properties, applications and environmental issues,
		J.	Know applications of refrigeration and air-
			conditioning
			CO1: Study the various refrigeration cycles and
			evaluate performance using refrigeration property
			tables.
			CO2: Explain the need for multiple pressure
			refrigeration systems and Evaluate their
			performance by applying mass and energy balance
			equations.
			CO3Understand the basic air conditioning
			processes on psychrometric charts, calculate
			cooling load for its applications.
			CO4: Study of various equipment- operating
			principles, operating and safety controls employed
			in refrigeration and air conditioning systems.
			CO5: Understand the air distribution systems with
10	302050	(Machatronics)	air handling unit. CO1: Identification of key elements of
10	302030	(Mechatronics)	mechatronics system and its representation in terms
			of block diagram.
			CO2: Ability to explain working principle,
			characteristics and applications of basic sensors and
			actuators.
			CO3: Ability to estimate transfer function of given
			system represented in block diagram format.
1	1		system represented in block diagram format.

SINHGAD INSTITUTE OF TECHNOLOGY

(Affiliated to SPPU Pune and Approved by, AICTE, New Delhi.)
Gat No. 309/310 , Kusgaon (Bk), off Mumbai –Pune, Expressway.

			CO4: A1:114 41-11 4- 11-14-1
			CO4: Ability to explain analog to digital conversion principle and procedure.
			CO5: Ability to draw ladder diagram for given
			simple control situation.
			CO6: Ability to explain significance of P, I and D
			control actions
11	302051	Manufacturing	CO1: Student should be able to apply the
		Processes-II)	knowledge of various manufacturing Process.
			CO2: Student should be able to identify various
			process
			CO3: Student should be able to understand various
			parameters effect on Processes.
			CO4: Student should able to figure out application
			of modern machining.
			CO5: Student should get the Knowledge of Jigs and
			Fixtures
			CO6: Student should get the Knowledge for variety
			of operations.
12	302053	(Seminar)	CO1: Identify and compare technical and practical
			issues related to the area of course specialization
			CO2: Outline annotated bibliography of research
			demonstrating scholarly skills
			CO3: Prepare a well-organized report employing
			elements of technical writing and critical thinking
			CO4: Demonstrate the ability to describe, interpret
			and analyze technical issues and develop
			competence in presenting
			CO5: Recognize and relate practical and applied
			elements of technical writing and critical thinking
			CO6: Determine the capability to express the area
			of course specialization
		DE (Moch]2015 pattern
01	402041	Hydraulics and	CO1: Able to apply various laws of fluid
UI	402041	Pneumatics)	
		Theumatics)	mechanics to the hydraulic and Pneumatic systems
			CO2: Able to define various principles and
			functions of various components of Hydraulic &
			pneumatic systems.
			CO3: Able to select appropriate components
			required for hydraulic and pneumatic systems
			CO4: Design hydraulic and pneumatic system for
			industrial applications and tried the same on the
			training kit
			CO5: Able to understand industrial applications of
			hydraulic and pneumatic system.
			CO6: Implement knowledge to design hydraulics
			and pneumatics applications.
02	402042	CAD/CAM	CO1: Apply homogeneous transformation matrix
		Automation)	for geometrical transformations of 2D CAD
			entities for basic geometric transformations
			CO2: Use analytical and synthetic curves and
		-	

SINHGAD INSTITUTE OF TECHNOLOGY

(Affiliated to SPPU Pune and Approved by, AICTE, New Delhi.)
Gat No. 309/310 , Kusgaon (Bk), off Mumbai –Pune, Expressway.

			C : 1 1:
			surfaces in part modeling.
			CO3: Do real times analysis of simple mechanical
			elements like beams, trusses, etc. and comment
			on safety of engineering components using analysis
			software
			CO4: Generate CNC program for Turning / Milling
			and generate tool path using CAM software.
			CO5: Demonstrate understanding of various rapid
			manufacturing techniques and develop
			competency in designing and developing products
			using rapid manufacturing technology.
			CO6: Understand the robot systems and their
			applications in manufacturing industries.
03	402043	Dynamics of	CO1: Apply balancing technique for static and
		Machinery	dynamic balancing of multi cylinder inline and
			radial engines.
			CO2: Estimate natural frequency for single DOF
			undamped & damped free vibratory systems
			CO3: Determine response to forced vibrations due
			to harmonic excitation, base excitation and
			excitation due to unbalance forces.
			CO4: Estimate natural frequencies, mode shapes
			for 2 DOF undamped free longitudinal and
			torsional vibratory systems
			CO5: Describe vibration measuring instruments
			for industrial / real life applications along with
			suitable method for vibration control.
			CO6: Explain noise, its measurement & noise
			reduction techniques for industry and day today
			life
			Problems.
04	402044A	Finite Element	CO1: Understand the different techniques used to
		Analysis)	solve mechanical engineering problems.
			CO2: Derive and use 1-D and 2-D element stiffness
			matrices and load vectors from various methods to
			solve for displacements and stresses.
			CO3: Apply mechanics of materials and machine
			design topics to provide preliminary results used
			for testing the reasonableness of finite element
			results.
			CO4: Explain the inner workings of a finite
			element code for linear stress, displacement,
			temperature and modal analysis.
			CO5: Use commercial finite element analysis
			software to solve complex problems in solid
			mechanics and heat transfer.
			CO6: Interpret the results of finite element analyses
			and make an assessment of the results in terms of
			modeling (physics assumptions) errors,
			discretization (mesh density and refinement toward
	1	I .	, ,

SINHGAD INSTITUTE OF TECHNOLOGY

(Affiliated to SPPU Pune and Approved by, AICTE, New Delhi.)
Gat No. 309/310 , Kusgaon (Bk), off Mumbai –Pune, Expressway.

		Department of me	chanical Engineering
			convergence) errors, and numerical (round-off) errors
05	402045A	(Automobile	
05	402045A	(Automobile	CO1: To compare and select the proper automotive
		Engineering)	system for the vehicle
			CO2: To analyse the performance of the vehicle.
			CO3: To diagnose the faults of automobile vehicles.
			CO4: To apply the knowledge of EVs, HEVs and solar vehicles
06	402045C	Energy Audit and	CO1: Compare energy scenario of India and World.
		Management)	CO2: Carry out Energy Audit of the Residence /
			Institute/ Organization.
			CO3: Evaluate the project using financial
			techniques
			CO4:Identify and evaluate energy conservation
			opportunities in Thermal Utilities.
			CO5: Identify and evaluate energy conservation
			opportunities in Electrical Utilities.
			CO6: Identify the feasibility of Cogeneration and
			WHRUse a CFD tool effectively for practical
			problems and research.
07	402046	(Project-I)	CO1: Find out the gap between existing
			mechanical systems and develop new creative
			new mechanical system.
			CO2: Learn about the literature review
			Get the experience to handle various tools, tackles
			and machines.
			CO3: Strategise different Mechanisms for problem
			solving
			CO4: Defining various Methodologies for different
			Problem statement
			CO5: Fill the Gap between Industry and Academics
			for particular areas and generating numerous profit
00	4020.45		sources.
08	402047	(Energy Engineering)	CO1: To study the power generation scenario, the
			components of thermal power plant, improved
			Rankin cycle, Cogeneration cycle
			CO2: To understand details of steam condensing
			plant, analysis of condenser, an environmental
			impacts of thermal power plant, method to reduce
			various pollution from thermal power plant CO3: To study layout, component details of
			hydroelectric power plant, hydrology and elements,
			types of nuclear power plant
			CO4: To understand components; layout of diesel
			power plant, components; different cycles methods
			to improve thermal efficiency of gas power plant
			CO5: To understand components; layout of diesel
	I	_1	CO3. To unucistatiu components, tayout of thesef

SINHGAD INSTITUTE OF TECHNOLOGY

(Affiliated to SPPU Pune and Approved by, AICTE, New Delhi.)
Gat No. 309/310 , Kusgaon (Bk), off Mumbai –Pune, Expressway.

			power plant, components; different cycles methods
			to improve thermal efficiency of gas power plant
			CO6: To learn the different instrumentation in
			power plant and basics of economics of power
			generation.
09	402048	Mechanical System	CO1: Design machine tool gear boxes using
0)	402040	Design	standard procedure and modify them for enhanced
		Design	efficiency
			CO2: Assess the data by using statistical concepts
			and provide correct interpretation
			CO3: Identify different conveyors, categorize them
			for respective material handling systems and design
			them using related concepts
			CO4: Recognize thick & thin cylinders, categorize
			different pressure vessels and design them using
			Indian (IS-2825) & International (ASME Code
			for pressure vessel design) Standards
			CO5: Identify materials for I C engine components
			and apply design procedure to design them
			CO6: Outline objectives of optimum design and
			develop ability to apply optimum design principles
			of design for manufacturing, assembly & safety
10	402049B	Industrial Engineering	CO1: Describe different aspect of industrial
			engineering and productivity improvement
			techniques.
			CO2: Apply different concepts of method study to
			improve the work content
			CO3: describe and analyze techniques of work
			measurement and time study
			measurement and time study
			CO4: Illustrate different aspect of work system
			design and production planning control
			CO5: Identify various cost accounting and financial
			management practices applicable in different
			industries
			CO6: Apply concept of engineering economy,
	1000		CO6: Apply concept of engineering economy, ergonomics and industrial safety practices.
11	402050A	(Advance	CO6: Apply concept of engineering economy,
11	402050A	Manufacturing	CO6: Apply concept of engineering economy, ergonomics and industrial safety practices. CO1: Classify and Analyze special forming process
11	402050A	*	CO6: Apply concept of engineering economy, ergonomics and industrial safety practices. CO1: Classify and Analyze special forming process CO2: Analyze and identify applicability of
11	402050A	Manufacturing	CO6: Apply concept of engineering economy, ergonomics and industrial safety practices. CO1: Classify and Analyze special forming process
11	402050A	Manufacturing	CO6: Apply concept of engineering economy, ergonomics and industrial safety practices. CO1: Classify and Analyze special forming process CO2: Analyze and identify applicability of advanced joining process
11	402050A	Manufacturing	CO6: Apply concept of engineering economy, ergonomics and industrial safety practices. CO1: Classify and Analyze special forming process CO2: Analyze and identify applicability of advanced joining process CO3: Understand and analyze basic mechanisms of
11	402050A	Manufacturing	CO6: Apply concept of engineering economy, ergonomics and industrial safety practices. CO1: Classify and Analyze special forming process CO2: Analyze and identify applicability of advanced joining process
11	402050A	Manufacturing	CO6: Apply concept of engineering economy, ergonomics and industrial safety practices. CO1: Classify and Analyze special forming process CO2: Analyze and identify applicability of advanced joining process CO3: Understand and analyze basic mechanisms of hybrid non-conventional machining techniques CO4: Select appropriate micro and nano fabrication
11	402050A	Manufacturing	CO6: Apply concept of engineering economy, ergonomics and industrial safety practices. CO1: Classify and Analyze special forming process CO2: Analyze and identify applicability of advanced joining process CO3: Understand and analyze basic mechanisms of hybrid non-conventional machining techniques
11	402050A	Manufacturing	CO6: Apply concept of engineering economy, ergonomics and industrial safety practices. CO1: Classify and Analyze special forming process CO2: Analyze and identify applicability of advanced joining process CO3: Understand and analyze basic mechanisms of hybrid non-conventional machining techniques CO4: Select appropriate micro and nano fabrication

SINHGAD INSTITUTE OF TECHNOLOGY

(Affiliated to SPPU Pune and Approved by, AICTE, New Delhi.)
Gat No. 309/310 , Kusgaon (Bk), off Mumbai –Pune, Expressway.

			manufacturing techniques for engineering applications
			CO6: Understand Material Characterization techniques to analyze effects of chemical composition, composition variation, crystal structure etc.
12	402051	(Project-II)	CO1: Find out the gap between existing mechanical systems and develop new creative new mechanical system. CO2: Learn about the literature review CO3: Get the experience to handle various tools, tackles and machines. CO4: Strategise different Mechanisms for problem solving
			CO5: Defining various Methodologies for different Problem statement CO6: Fill the Gap between Industry and Academics for particular areas and generating numerous profit sources.